New Technologies for Land Imaging

Phil Dabney, LDCM Instrument Scientist

Jeff Masek, Landsat Project Scientist

February 5, 2015

Priorities for Land Imaging Enhancements

Based on discussions with Landsat Science Team and NLIR Pilot Study, the following system enhancements have been identified:

- (1) More frequent coverage (e.g. 8-day, 4-day)
- (2) Improve resolution of TIR bands to 60m
- (3) Provide separate 15m NIR and red sharpening bands
 - Supports higher-resolution vegetation indices
- (4) Specific additional spectral bands
 - Red-edge (0.7-0.8 μm) for Leaf-area, Chlorophyll, stress
 - Narrow 2.2 μm bands for cellulose, lignin
 - Water vapor (e.g. 0.94 μm)
 - Active fire (3-5 μ m)
- (5) Hyperspectral capability
- (6) Higher resolution (15m) across VSWIR

Approaches to Reducing Satellite Size & Cost

- Reduce imager bus resource load
 - Reduce imager mass and power
 - Reduce thermal management requirements
 - Warmer detector operating temps
 - Athermal metering structures and optics
 - Low power spaceflight electronics
- Shrink imagers
 - Technical limitations to and solutions for scaling down
 - Further studies into optical designs and detector issues
- Shrink space-craft bus components
 - There is a strong government and industry push in this area
- Higher integration of imagers and bus components
 - Wrap the bus around the imager (a.k.a. science craft)
- But does "smaller" really mean "cheaper"?
 - Maybe, but we need to be specific about opportunities
 - Smaller launch vehicle (but tough to do better than projected F9 costs)
 - Less costly spacecraft bus
 - Ride sharing options (e.g. ESPA, ESPA-Grande)
 - Making a smaller instrument alone (especially with exotic materials or engineering) may NOT cost less

SLI Reduced Envelope Study

- SLI has funded six contracts to study options for reducing VSWIR/TIR instrument size
 - Goal of 50x50x50cm volume, 50W, 50kg, with L8 specs (and 60m TIR)
 - Contractors asked to explore design concepts, note driving requirements, consider technologies that are likely to be available in the *Landsat 10* era
 - Disaggregation of TIR and VSWIR is allowed to be considered
- Awards made to:
 - Ball Aerospace & Technologies Corporation of Boulder, CO
 - Exelis Inc., Geospatial Systems of Fort Wayne, IN
 - Lockheed Martin Space Systems Company of Greenbelt, MD
 - Northrop Grumman Systems Corporation, Aerospace Systems of Redondo Beach, CA
 - Raytheon Company of El Segundo, CA
 - Surrey Satellite Technology US LLC of Englewood, CO
- 6-month studies complete March 2015

General Instrument Considerations (VSWIR)

- Telescope optics set the size of the instrument
 - The 30m resolution @ 2.2microns largely drives the minimum aperture size to approximately *10cm. (The TIR 60m drives in a combined system)
 - 15° Field of view requirement limits telescope choices for a pushbroom;
 Whiskbroom scanners could use smaller FOV telescope designs
 - Compact fast telescope designs may be susceptible to stray light, and increased AOI variation on focal plane
- Spatial edge-slope (ie. MTF or "resolving power") is a key driving requirement
 - Techniques exist to reduce the diffraction dictated apertures at the expense of data rate, SNR, and edge response ring.
 - FPA Oversampling
 - · Detector geometries
 - MTF compensation in re-sampling algorithms (aka sharpening filters)
- The inclusion of the pan band does not necessarily drive instrument envelope

General Instrument Considerations (TIR)

- 60m equivalent RER @ 12 microns drives the aperture size and overall telescope size
 - Optical Diffraction limited only considerations require an aperture of at least 16 cm
 - When "normal" detector geometries, MTFs, line scan rates, and integration times are considered, this jumps to approximately 20 cm
- Stray-light control also drives overall telescope size and design options
 - A cold stop is desired for quantum (nonmicrobolometer) detectors to reduce the cooling and control required for the entire telescope.
- Some form of on-board calibration is necessary
 - Drives design topography, mechanism complexity, and power

General Instrument Considerations (TIR)

 Various detector options exist, or may exist in the L-10 time frame. Each has its unique features and drawbacks

MCT

- requires cooling to 60K-77K
- lower dark level stability (requires frequent dark calibration)
- High QE

– QWIP's

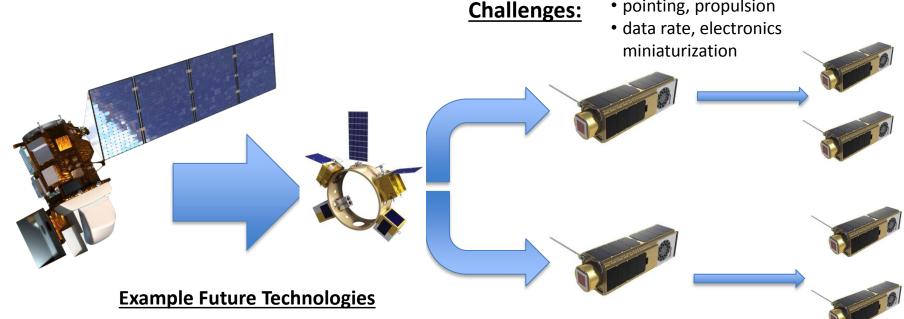
- requires cooling to 40K-43K
- stable dark level (suitable for push-broom implementation)
- Low QE

MicroBolometer

- 293K operation, potentially smaller envelope and lower bus power
- Response times support 100m resolution for push-broom; 60m is questionable
- Markets driving toward increased sensitivity, rather than decreased response times
 - Sensitivity is still low, requiring TDI and fast optics
- Strained Layer Super-lattice & nBn or XBn barrier infrared detectors
 - developing technology
 - require cooling to ~130K-150K
 - Higher QE than QWIPs

Technology Challenges to Reduce Size and Cost

Architectures


Current Landsat Paradigm SmallSat Paradigm (<180kg)

Large CubeSat Paradigm (≥12U)

Small CubeSat Paradigm (<12U)

Key CubeSat

- Spatial resolution (e.g., 120m TIR)
- Calibration
- pointing, propulsion

- Instrument
 - -Stable TIR Detectors
 - -Miniature Cryocoolers
 - -Calibration Architectures
- Spacecraft
 - -Propulsive Capabilities

- Instrument
 - -Micro Bolometer Development -Curved Detectors/Large
 - -Refractive Telescope
- Spacecraft
 - –Constellation Flying / **Propulsion**
- Communication Capabilities

- Instrument
 - **Band Optics**
 - -Tight Thermal control
- Spacecraft
 - -Propulsive Capabilities
- -Communication Capabilities

Imaging Spectroscopy

- Spectrometers have several advantages, even for multispectral measurements
 - Flexible "composite" bandpass definition
 - Ability to acquire narrow-band data for other and new products
 - As # bands increases, instrument design may become simpler than crafting filters for each band and fitting the discrete filters within the FOV of the telescope
 - The band requirements will ultimately let the designers determine where that breakpoint is
 - Potential for improved band-to-band registration and band simultaneity
- But there are technical challenges as well
 - Stray light & non-uniformity for large FOV instruments
 - SNR of narrow-band derived Landsat data is inherently lower for the <u>same sized aperture</u>, due to increase ROIC read-noise in the aggregated product.
 - SNR enhancing FPA features found in many MS designs are not readily achievable, or available, in a spectrograph

Conclusions

- Primary drive has been to reduce Landsat instrument size while maintaining image quality
 - New technologies can help
 - Fundamental restrictions to how small we can go, while obtaining coverage in SWIR and TIR, based on optical physics
 - Some form factors, such as CubeSats, will be severely challenged to provide Landsat quality SWIR and TIR data and 60m TIR is not possible in those small boxes
 - Full capability instruments that allow the use of an ESPA class bus appear to be feasible in the L-10 and beyond time frame
- As the science community requires greater and finer spectral coverage, spectroscopy likely to become more advantageous
 - Top level requirements such as RER, SNR, and bandpasses are readily achievable
 - Caveats remain to some of the performance areas such as:
 - spectral uniformity and out-of-band,
 - spatial stray light